Friday 12th August 2022

Intensity-based holographic imaging via space-domain Kramers–Kronig relations – Nature

[ad_1]

  • 1.

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    ADS 

    Google Scholar
     

  • 2.

    Yetisen, A. K., Naydenova, I., Vasconcellos, F. D., Blyth, J. & Lower, C. R. Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem. Rev. 114, 10654–10696 (2014).


    Google Scholar
     

  • 3.

    Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S. & Javidi, B. Optical techniques for information security. Proc. IEEE 97, 1128–1148 (2009).


    Google Scholar
     

  • 4.

    Coufal, H. J, Psaltis, D. & Sincerbox, G. T. Holographic Data Storage (Springer, 2000).

  • 5.

    Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    ADS 

    Google Scholar
     

  • 6.

    Park, J. H., Park, J., Lee, K. & Park, Y. Disordered optics: exploiting multiple light scattering and wavefront shaping for nonconventional optical elements. Adv. Mater. 32, 1903457 (2019).


    Google Scholar
     

  • 7.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).

    ADS 

    Google Scholar
     

  • 8.

    Yaraş, F., Kang, H. & Onural, L. State of the art in holographic displays: a survey. J. Disp. Technol. 6, 443–454 (2010).

    ADS 

    Google Scholar
     

  • 9.

    Yu, H., Lee, K., Park, J. & Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photonics 11, 186–192 (2017).

    ADS 

    Google Scholar
     

  • 10.

    Schnars, U., Falldorf, C., Watson, J. & Jüptner, W. Digital Holography and Wavefront Sensing (Springer-Verlag, 2016). .

  • 11.

    Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018).

    ADS 

    Google Scholar
     

  • 12.

    Momose, A. Recent advances in X-ray phase imaging. Jpn J. Appl. Phys. 44, 6355–6367 (2005).

    ADS 

    Google Scholar
     

  • 13.

    Kemper, B. & von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 47, A52–A61 (2008).


    Google Scholar
     

  • 14.

    Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009).

    ADS 

    Google Scholar
     

  • 15.

    Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    ADS 

    Google Scholar
     

  • 16.

    Tegze, M. & Faigel, G. X-ray holography with atomic resolution. Nature 380, 49–51 (1996).

    ADS 

    Google Scholar
     

  • 17.

    Teague, M. R. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983).

    ADS 

    Google Scholar
     

  • 18.

    Waller, L., Tian, L. & Barbastathis, G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express 18, 12552–12561 (2010).

    ADS 

    Google Scholar
     

  • 19.

    Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 85, 4795–4797 (2004).

    ADS 

    Google Scholar
     

  • 20.

    Mehta, S. B. & Sheppard, C. J. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt. Lett. 34, 1924–1926 (2009).

    ADS 

    Google Scholar
     

  • 21.

    Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739–745 (2013).

    ADS 

    Google Scholar
     

  • 22.

    Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express 23, 11394–11403 (2015).

    ADS 

    Google Scholar
     

  • 23.

    Zhang, F. C., Pedrini, G. & Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75, 043805 (2007).

    ADS 

    Google Scholar
     

  • 24.

    Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).

    ADS 

    Google Scholar
     

  • 25.

    Zhang, F. C. & Rodenburg, J. M. Phase retrieval based on wave-front relay and modulation. Phys. Rev. B 82, 121104 (2010).

    ADS 

    Google Scholar
     

  • 26.

    Horisaki, R., Ogura, Y., Aino, M. & Tanida, J. Single-shot phase imaging with a coded aperture. Opt. Lett. 39, 6466–6469 (2014).

    ADS 

    Google Scholar
     

  • 27.

    Lee, K. & Park, Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat. Commun. 7, 13359 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Baek, Y., Lee, K. & Park, Y. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl. 10, 024053 (2018).

    ADS 

    Google Scholar
     

  • 29.

    Kronig, R. D. L. On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926).

    ADS 

    Google Scholar
     

  • 30.

    Kramers, H. A. La diffusion de la lumière par les atomes. Atti Cong. Intern. Fis. 2, 545–557 (1927).


    Google Scholar
     

  • 31.

    Baek, Y., Lee, K., Shin, S. & Park, Y. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica 6, 45–51 (2019).

    ADS 

    Google Scholar
     

  • 32.

    Hoenders, B. On the solution of the phase retrieval problem. J. Math. Phys. 16, 1719–1725 (1975).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 33.

    Misell, D. & Greenaway, A. An application of the Hilbert transform in electron microscopy: II. Non-iterative solution in bright-field microscopy and the dark-field problem. J. Phys. D Appl. Phys. 7, 1660 (1974).

    ADS 

    Google Scholar
     

  • 34.

    Toll, J. S. Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760 (1956).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 35.

    Alexandrov, S. A., Hillman, T. R., Gutzler, T. & Sampson, D. D. Synthetic aperture fourier holographic optical microscopy. Phys. Rev. Lett. 97, 168102 (2006).

    ADS 

    Google Scholar
     

  • 36.

    Gao, P., Pedrini, G. & Osten, W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett. 38, 1328–1330 (2013).

    ADS 

    Google Scholar
     

  • 37.

    Shin, S., Kim, K., Lee, K., Lee, S. & Park, Y. Effects of spatiotemporal coherence on interferometric microscopy. Opt. Express 25, 8085–8097 (2017).

    ADS 

    Google Scholar
     

  • 38.

    Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).

    ADS 

    Google Scholar
     

  • 39.

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999). .

  • 40.

    Sun, J., Chen, Q., Zhang, J., Fan, Y. & Zuo, C. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett. 43, 3365–3368 (2018).

    ADS 

    Google Scholar
     

  • 41.

    Kim, K., Kim, K. S., Park, H., Ye, J. C. & Park, Y. Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Opt. Express 21, 32269–32278 (2013).

    ADS 

    Google Scholar
     

  • 42.

    Ling, R., Tahir, W., Lin, H. Y., Lee, H. & Tian, L. High-throughput intensity diffraction tomography with a computational microscope. Biomed….

  • [ad_2]

    Read More:Intensity-based holographic imaging via space-domain Kramers–Kronig relations – Nature