Friday 12th August 2022

Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed

[ad_1]

  • Wheatstone, C. Contributions to the Physiology of Vision. Part the First. On Some Remarkable and Hitherto Unobserved, Phenomena of Binocular Vision. Philosophical Transactions of the Royal Society of London 128, 371–394 (1838).

    ADS 
    Article 

    Google Scholar
     

  • Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany 58, 881–898 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Liu, S.-L. et al. Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Sci. Rep. 3 (2013).

  • Javidi, B., Okano, F. & Son, J.-Y. Three-Dimensional Imaging, Visualization and Display. (Springer, 2009).

  • Koschan, A., Pollefeys, M. & Abidi, M. 3D imaging for safety and security. Vol. 35 (Springer, 2007).

  • Bell, T. & Zhang, S. Toward superfast three-dimensional optical metrology with digital micromirror device platforms. Opt. Eng. 53, 112206–112206 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Kittler, J., Hilton, A., Hamouz, M. & Illingworth, J. 3D assisted face recognition: A survey of 3D imaging, modelling and recognition approachest, in IEEE Computer Society Conference. IEEE 114–114 (2005).

  • Dickson, P. et al. Mosaic generation for under vehicle inspection, in Applications of Computer Vision Conference. IEEE 251–256 (2002).

  • Sukumar, S. R. et al. Robotic three-dimensional imaging system for under-vehicle inspection. Journal of Electronic Imaging 15, 033008-033008-033011 (2006).

  • Zebra Imaging, Deliver Mission Critical Insights, http://www.zebraimaging.com/defense/ Accessed at: 8/22/2015.

  • Trussell, C. W. 3D imaging for Army applications, in Aerospace/Defense Sensing, Simulation and Controls. International Society for Optics and Photonics 126–131 (2001).

  • Geng, J. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon. 3, 128–160 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Huang, P. S. & Zhang, S. Fast three-step phase-shifting algorithm. Appl. Opt. 45, 5086–5091 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Javidi, B., Zhang, G. & Li, J. Encrypted optical memory using double-random phase encoding. Appl. Opt. 36, 1054–1058 (1997).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat Commun 3, 745 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Satat, G. et al. Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nat Commun 6 (2015).

  • Xiao, X., Javidi, B., Martinez-Corral, M. & Stern, A. Advances in three-dimensional integral imaging: sensing, display and applications [Invited]. Appl. Opt. 52, 546–560 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Sun, B. et al. 3D Computational Imaging with Single-Pixel Detectors. Science 340, 844–847 (2013).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Yi-Yuan, C., Yung-Huang, H., Yung-Cheng, C. & Yong-Sheng, C. A 3-D surveillance system using multiple integrated cameras, in 2010 IEEE International Conference on Information and Automation (ICIA). 1930–1935 (2010).

  • Miles, H., Seungkyu, L., Ouk, C. & Horaud, R. P. Time-of-Flight Cameras: Principles, Methods and Applications. (Springer, 2012).

  • Sell, J. & O’Connor, P. The xbox one system on a chip and kinect sensor. IEEE Micro 44–53 (2014).

  • McCarthy, A. et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt. Express 21, 8904–8915 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Medina, A., Gayá, F. & del Pozo, F. Compact laser radar and three-dimensional camera. J. Opt. Soc. Am. A 23, 800–805 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Gokturk, S. B., Yalcin, H. & Bamji, C. A Time-Of-Flight Depth Sensor – System Description, Issues and Solutions, in Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’04) Volume 3 – Volume 03. IEEE Computer Society 35 (2004).

  • Iddan, G. J. & Yahav, G. Three-dimensional imaging in the studio and elsewhere, in Three-Dimensional Image Capture and Applications IV. Proc. SPIE 4298, 48–55 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Advanced Scientific Concepts, Products overview, http://www.advancedscientificconcepts.com/products/products.html Accessed at: 8/22/2015.

  • Stettner, R., Bailey, H. & Richmond, R. D. Eye-safe laser radar 3D imaging, in Laser Radar Technology and Applications VI. Proc. SPIE 4377, 46–56 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Orsdemir, A., Altun, H. O., Sharma, G. & Bocko, M. F. On the security and robustness of encryption via compressed sensing, in Military Communications Conference, 2008. MILCOM 2008. IEEE. 1–7 (2008).

  • Gao, L., Liang, J., Li, C. & Wang, L. V. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516, 74–77 (2014).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Shiraga, H., Nakasuji, M., Heya, M. & Miyanaga, N. Two-dimensional sampling-image x-ray streak camera for ultrafast imaging of inertial confinement fusion plasmas. Review of Scientific Instruments 70, 620–623 (1999).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Heshmat, B., Satat, G., Barsi, C. & Raskar, R. Single-shot ultrafast imaging using parallax-free alignment with a tilted lenslet array, in CLEO: 2014. Optical Society of America STu3E.7 (2014).

  • Nakagawa, K. et al. Sequentially timed all-optical mapping photography (STAMP). Nat Photon 8, 695–700 (2014).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Goda, K., Tsia, K. & Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145–1149 (2009).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Bioucas-Dias, J. M. & Figueiredo, M. A. T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. Ieee T Image Process 16, 2992–3004 (2007).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Figueiredo, M. A., Nowak, R. D. & Wright, S. J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE Journal of Selected Topics in Signal Processing 1, 586–597 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Abolghasemi, V., Ferdowsi, S. & Sanei, S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Processing 92, 999–1009 (2012).

    Article 

    Google Scholar
     

  • Afonso, M. V., Bioucas-Dias, J. M. & Figueiredo, M. A. Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Transactions on Image Processing 19, 2345–2356 (2010).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Gilbert, A. & Indyk, P. Sparse Recovery Using Sparse Matrices. Proceedings of the IEEE 98, 937–947 (2010).

    Article 

    Google Scholar
     

  • Wright, S. J., Nowak, R. D. & Figueiredo, M. A. Sparse Reconstruction by Separable Approximation. IEEE Transactions on Signal Processing 57, 2479–2493 (2009).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Chambolle, A. An algorithm for total variation minimization and applications. Journal of Mathematical imaging and vision 20, 89–97 (2004).

    MathSciNet 
    Article 

    Google Scholar
     

  • Deepan, B., Quan, C., Wang, Y. & Tay, C. J. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Appl. Opt. 53, 4539–4547 (2014).

    CAS 
    ADS 
    Article 

    Google Scholar
     

  • Hamamatsu Photonics…

  • [ad_2]

    Read More:Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed